Полная версия

Главная arrow Информатика arrow Автоматизированный системно-когнитивный анализ и его применение для управления социально-экономическими системами в АПК

  • Увеличить шрифт
  • Уменьшить шрифт


<<   СОДЕРЖАНИЕ   >>

Сравнение, идентификация и прогнозирование, как разложение векторов объектов в ряд по векторам классов (объектный анализ)

Ранее были введены неметрические интегральные критерии сходства объекта, описанного массивом-локатором Li с обобщенными образами классов Iij (выражения 40-42).

Для непрерывного случая выражение (42) принимает вид:

(45)

Таким образом, выражение (45) представляет собой обобщение интегрального критерия сходства конкретного объекта и обобщенного класса (42) для непрерывного случая в координатной форме.

Отметим, что коэффициенты ряда Фурье (24) по своей математической форме и смыслу сходны с ненормированными коэффициентами корреляции, т.е. по сути скалярными произведениями для непрерывных функций в координатной форме: выражением (45) между разлагаемой в ряд кривой f(x) и функциями Sin и Сos различных частот и амплитуд [7].

(46)

где n = {1, 2, 3,…} - натуральное число.

Сравнение выражений (45) и (46) позволяет сделать вывод о том, что процесс идентификации и прогнозирования (распознавания, реализованный в предложенной математической модели, может рассматриваться как разложение вектора-локатора распознаваемого объекта в ряд по векторам информативностей классов распознавания (которые представляют собой произвольные функции, сформированные при синтезе модели путем многопараметрической типизации на основе эмпирических данных).

Например, представим результаты идентификации на рисунке 2:

Рис. 4. Пример разложения профиля состояния МИПС АПК, сложившегося в 2001 г., в ряд по образам классов

Продолжая развивать аналогию с разложением в ряд, данный результат идентификации можно представить в векторной аналитической форме:

или в координатной форме, более удобной для численных расчетов:

(47)

Предполагается, что . Таким образом, массив-локатор, характеризующий распознаваемый объект, рассматривается как сумма произведений профилей классов на интегральный критерий сходства массива-локатора с этими профилями (т.е. взвешенная суперпозиция или разложение в ряд по профилям классов).

В выражении (47):

где I(j) - интегральный критерий сходства массива-локатора, описывающего состояние объекта и j-го класса рассчитываемый, согласно выражений (42) или (44):

(48)

I(i,j) - вектор обобщенного образа j-го класса, координаты которого рассчитываются в соответствии с системным обобщением формулы Харкевича (18):

(49)

Обозначения I(i,j) и Iij, и т.п. эквивалентны. Смысл всех переменных, входящих в выражения (48) и (49) раскрыт выше.

При дальнейшем развитии данной аналогии естественно возникают вопросы: о полноте, избыточности и ортонормированности системы векторов классов как функций, по которым проводится разложение вектора объекта; о сходимости, т.е. возможности и корректности такого разложения.

В общем случае вектор объекта совершенно не обязательно должен разлагаться в ряд по векторам классов таким образом, чтобы сумма ряда во всех точках совпадала со значениями исходной функции. Это означает, что система векторов классов может быть неполна по отношению к профилю распознаваемого объекта, и, тем более, всех возможных объектов.

Предлагается считать не разлагаемые в ряд, т.е. плохо распознаваемые объекты суперпозицией хорошо распознаваемых объектов ("похожих" на те, которые использовались для формирования обобщенных образов классов), и объектов, которые и не должны распознаваться, так как объекты этого типа не встречались в обучающей выборке и не использовались для формирования обобщенных образов классов и не коррелирует с ними, а также не относятся к представляемой обучающей выборкой генеральной совокупности.

Нераспознаваемую компоненту можно рассматривать либо как шум, либо считать ее полезным сигналом, несущим ценную информацию о неисследованных объектах интересующей нас предметной области (в зависимости от целей и тезауруса исследователей). Использование первого варианта не приводит к осложнениям, так как примененный в математической модели алгоритм сравнения векторов объектов и классов, основанный на вычислении нормированной корреляции Пирсона (сумма произведений), является весьма устойчивым к наличию белого шума в идентифицируемом сигнале. При использовании второго варианта необходимо дообучить систему распознаванию объектов, несущих такую компоненту (в этой возможности и заключается адаптивность модели). Технически этот вопрос решается копированием описаний плохо распознавшихся объектов из распознаваемой выборки в обучающую, их идентификацией экспертами и дообучением системы. Кроме того, может быть целесообразным расширить справочник классов распознавания новыми классами, соответствующими этим объектам, и осуществить пересинтез модели. Это позволяет расширить генеральную совокупность, отражаемую моделью, по отношению к которой обучающая выборка репрезентативна.

Однако на практике гораздо чаще наблюдается противоположная ситуация (можно даже сказать, что она типична), когда система векторов избыточна, т.е. в системе классов распознавания есть очень похожие классы (между которыми имеет место высокая корреляция, наблюдаемая в режиме кластерно-конструктивный анализ). Это означает, что в системе сформировано несколько практически одинаковых образов с разными наименованиями. Для исследователя это само по себе является очень ценной информацией. Однако если исходить только из потребности разложения распознаваемого объекта в ряд по векторам классов (чтобы определить суперпозицией каких образов он является, т.е. "разложить его на компоненты"), то наличие сильно коррелирующих друг с другом векторов представляется неоправданным, так как просто увеличивает размерности данных, внося в них мало нового по существу. Поэтому возникает задача исключения избыточности системы классов распознавания, т.е. выбора из всей системы классов распознавания такого минимального их набора, в котором профили классов минимально коррелируют друг с другом, т.е. ортогональны в фазовом пространстве признаков. Это условие в теории рядов называется "ортонормируемостью" системы базовых функций, а в факторном анализе связано с идеей выделения "главных компонент".

В предлагаемой математической модели реализованы два варианта выхода из данной ситуации:

  • 1) исключение неформирующихся, расплывчатых классов;
  • 2) объединение почти идентичных по содержанию (дублирующих друг друга) классов.

Однако выбрать нужный вариант и реализовать его, используя соответствующие режимы, пользователь технологии АСК-анализа должен сам. Вся необходимая и достаточная информация для принятия соответствующих решений предоставляется пользователю инструментария АСК-анализа.

Если считать, что функции образов составляют формально-логическую систему, к которой применима теорема Геделя, то можно сформулировать эту теорему для данного случая следующим образом: "Для любой системы базисных функций в принципе всегда может существовать по крайней мере одна такая функция, что она не может быть разложена в ряд по данной системе базисных функций, т.е. функция, которая является ортонормированной ко всей системе базисных функций в целом". Поэтому для адекватного отражения подобных функций в модели необходимо повышение размерности семантического информационного пространства, т.е. увеличение размерности справочников классов и признаков.

Очевидно, не взаимосвязанными друг с другом могут быть только четко оформленные, детерминистские образы, т.е. образы с высокой степенью редукции ("степень сформированности конструкта"). Поэтому в процессе выявления взаимно-ортогональных базисных образов в первую очередь из модели будут исключены аморфные "расплывчатые" образы, которые связаны практически со всеми остальными образами.

В некоторых случаях результат такого процесса представляет интерес, и это делает оправданным его реализацию. Однако можно предположить, что наличие расплывчатых образов в системе является оправданным, так как в этом случае система образов не будет формальной и подчиняющейся теореме Геделя. Следовательно, система распознавания будет более полна в том смысле, что увеличится вероятность идентификации любого объекта, предъявленного ей на распознавание. Конечно, уровень сходства с аморфным образом не может быть столь высоким, как с четко оформленным, в связи с чем в этом случае более уместно применять термины "ассоциация" или нечеткая, расплывчатая идентификация, чем "однозначная идентификация".

Итак, можно сделать следующий вывод: допустимость в математической модели СК-анализа не только четко оформленных (детерминистских) образов, но и аморфных, нечетких, расплывчатых, рыхлых образов является важным достоинством данной модели. Это обусловлено тем, что данная модель обеспечивает корректные результаты анализа, идентификации и прогнозирования даже в тех случаях, когда модели идентификации и информационно-поисковые системы детерминистского типа традиционных АСУ практически неработоспособны. В этих условиях данная модель СК-анализа работает как система ассоциативной (нечеткой) идентификации.

Таким образом, в предложенной семантической информационной модели при идентификации и прогнозировании, по сути, осуществляется разложение векторов идентифицируемых объектов по векторам классов распознавания, т.е. выполняется "объектный анализ" (по аналогии с спектральным, гармоническим или Фурье-анализом), что позволяет рассматривать идентифицируемые объекты как суперпозицию обобщенных образов классов различного типа с различными амплитудами (25). При этом вектора обобщенных образов классов, с математической точки зрения, представляют собой произвольные функции и не обязательно образуют полную и не избыточную (ортонормированную) систему функций.

Для любого объекта всегда существует такая система базисных функций, что вектор объекта может быть представлен в форме линейной суперпозиции (суммы) этих базисных функций с различными амплитудами. Это утверждение, по-видимому, является одним из следствий фундаментальной теоремы А.Н. Колмогорова, доказанной им в 1957 г.

Теорема Колмогорова. Любая непрерывная функция от n переменных F(x1, x2,..., xn) может быть представлена в виде:

где gj и hij - непрерывные функции, причем hij не зависят от функции F.

Эта теорема означает, что для реализации функций многих переменных достаточно операций суммирования и композиции функций одной переменной. Удивительно, что в этом представлении лишь функции gj зависят от представляемой функции F, а функции hij универсальны. Это означает, что одну и ту же функцию многих переменных F можно разложить в ряд по различным системам базисных функций hij. Необходимо отметить, что теорема Колмогорова является обобщением теоремы В.И. Арнольда (1957), которая дает решение 13-й проблемы Гильберта.

К сожалению, определение вида функций hij и gj для данной функции F представляет собой математическую проблему, для которой пока не найдено общего строгого решения.

В работе [7] предлагается рассматривать приведенную семантическую информационную модель как один из вариантов решения этой проблемы. В этом контексте функция F интерпретируется как образ идентифицируемого объекта, функция hij - образ j-го класса, а функция gj - мера сходства образа объекта с образом класса.

 
<<   СОДЕРЖАНИЕ   >>